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A new variational technique, the Global Element Method (GEM), is applied to a well- 
known nuclear physics problem. The GEM enables the solution region to be divided into 
physically meaningful subregions and appropriate expansion functions to be used in each 
of these subregions. The continuity of the trial functions (and their derivatives) at the 
subregion interfaces, together with the prescribed boundary conditions is enforced by the 
variational principle. It is demonstrated that for the bound-state and scattering problems 
for a typical discontinuous nuclear potential, the GEM obtains significantly faster con- 
vergence rates than previous variational methods. Moreover this new approach will enable 
the major components of existing computer programs, using conventional global varia- 
tional methods, to be reused after suitable modification. The GEM, with the possibility of 
high convergence rates, should hopefully prove to be a useful computational tool in many 
areas of computational physics. 

1. INTRODUCTION 

Variational methods (or the closely related, but more widely applicable, Gale&in 
methods) are at present popular numerical techniques for the solution of differential 
equations. Two practical implementations of these methods have developed. In the 
finite element approach (FEM), the trial functions are chosen to be nonzero only over 
a small part (element) of the region under consideration, continuity being imposed 
explicitly across the interface of each region and convergence being obtained by 
increasing the number of elements (see, for example, Strang and Fix [l]). Typically, 
a low-order polynomial, e.g., cubic spline is used as the trial function in a FEM. 
Alternatively, in the global variational approach (GVM), the trial functions are 
chosen to exist everywhere in the region of interest and typically, orthogonal poly- 
nomials are used, convergence being obtained by increasing the degree of the poly- 
nomial (see, for example, Mikhlin [2]). 
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Conventionally in both a GVM and FEM, the trial functions are chosen to explicitly 
satisfy the essential boundary conditions associated with the differential equation. 
However, in many circumstances, this constraint can prove inconvenient and it is 
preferable to work within a variational formalism which does not require this condition 
on the trial functions. Some attempts along these lines within a FEM can be found in 
Zienkiewicz [3]. Likewise, within a GVM, attempts to relax the boundary conditions 
have been made by Arthurs [4], Yates [5], Hennell and Hendry [6] and Davies and 
Hendry [7]. It should be noted that there are some possible advantages to be obtained 
from using a GVM in preference to a FEM. There are three main points. Firstly, 
Delves and Mead {8] have shown that high rates of (asymptotic) convergence can be 
expected when the GVM is applied to a particular class of problem; in practice the 
convergence rates obtained are usually much higher than from a FEM using low-order 
elements. Secondly, the matrices produced in a GVM, though nonsparse are typically 
much smaller than those from a FEM and efficient iterative techniques (Delves [9]) 
exploiting the structure of the matrices have been developed to improve on the 0(N3) 
cost associated with the direct solution of an N x N matrix. Finally, although difficult 
to characterize completely, there should be a class of problems for which the GVM is 
more efficient than a FEM. The GVM is best adapted to relatively simple regions 
(e.g., squares, circles) for which a natural choice of trial functions can be made, 
whereas the FEM is best for irregular shaped regions. 

Both methods however give poor convergence rates for problems having a solution 
containing nonpolynomial behavior (e.g., singular derivatives at a reentrant corner, 
Fix, et al. [lo], or a discontinuous second derivative at a point, Hendry and Hennell 
[12, 131). In these cases it is possible to improve the convergence rate by including 
in the trial functions core terms (which reproduce the appropriate behavior) in addition 
to the normal polynomial terms. However a certain amount of caution must be 
exercised, since the systematic inclusion of core terms (to represent more precisely the 
nonpolynomial behavior) tends to lead to progressively more ill-conditioned matrices 
due to the presence of the two types of terms (Fix, et al. [lo]). 

Recently, there has been proposed by Delves and Hall [ll] a new variational 
method, the global element method (GEM). This method attempts to retain the 
flexibility of the FEM for irregular shaped regions while at the same time retaining 
the high convergence rate associated with the GVM. In the GEM, the region under 
consideration is subdivided into a small number of subregions, the choice of these 
subregions being dictated by the geometry of the region or by the anticipated different 
solution behavior within the various parts of the region. Within each subregion, a 
suitable expansion set is chosen, continuity across the interfaces of the subregions 
being imposed implicitly in the variational functional (using an approach similar 
to that used in Davies and Hendry [7] to relax the boundary conditions). Note that 
by this approach it is hoped that terms describing nonpolynomial behavior can be 
systematically and straightforwardly included without leading to ill-conditioned 
matrices, since there will only be one type of trial function associated with each sub- 
region. 

A somewhat similar regional approach (and variational functional allowing the 
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implicit imposition of the interface conditions) has previously been proposed in the 
nuclear engineering field [19, 201. However the present approach differs significantly 
in the treatment within each subregion and the present variational functional permits 
the relaxation (if so desired for convenience) of the essential boundary conditions 
associated with the differential equation. 

In nuclear physics, square well potentials (or more general discontinuous potentials) 
are often used to describe nuclear forces [12]. As indicated before, if a conventional 
variational method (either GVM or FEM) is used to solve the Schrodinger equation 
for such a discontinuous potential, it is found that the obtained convergence rate is 
very slow due to the second derivative of the true solution containing a discontinuity 
(see Hendry and Hennell [12, 131). In [12, 131, this convergence rate was significantly 
improved by including suitable core terms having an explicit second-order discon- 
tinuity at the appropriate point. However, this process of systematically including 
more core terms to better represent the discontinuity (and hence improve the conver- 
gence rate) could not be continued indefinitely since it was found that after a few 
core terms had been included no significant improvement was obtained [13]. 

Since the continuity conditions across an interface imposed in the GEM are 
exactly the physical conditions associated with the solution of the Schrodinger 
equation for such a discontinuous potential, it is of interest to examine the performance 
of the GEM to see whether it can reproduce the second-order discontinuity in the 
wavefunction and at the same time achieve a high convergence rate. 

In this paper the GEM is applied to the two-body s-wave system interacting via the 
potential of Bressel, et al. [14], which was previously used in [12, 131. In Section 2, 
the GEM is outlined for the bound-state problem and the results from the method 
presented. Similarly, Section 3 describes the GEM and the results for the scattering 
problem with the elements being chosen to reflect the regions which arise naturally 
in this case. 

Finally Section 4 contains some conclusions. 

2. THE GLOBAL ELEMENT METHOD APPLIED TO THE BOUND-STATE PROBLEM 

2.1. Problem 

We will be concerned with finding the binding energy of the two-body s-wave 
system 

*u(r) = k(r) rE 10, 4, (2.la) 

where 

3? f - +Jj + V(r) (2.lb) 

and V(r) is a given (discontinuous) potential. 



GLOBAL ELEMENT METHOD 379 

Associated with Eq. (2.1) are the boundary conditions, 

u(r) - r, r -+ 0, 
(2.lc) 

u(r) - 0, r-+ co. 

For future reference, Fig. la shows a typical nuclear potential with a discontinuity 
at r = rc . 

0 

ICI (bt bl 

0' rc co 

(cl Iml ib) cl 

0 rc b 

FIG. 1. A typical discontinuous nuclear potential V, showing the elements used in Sections 2 
and 3. 

2.2. Global Elements 

The GEM applied to an inhomogeneous second-order elliptic differential equation 
has previously been described in detail in [ll]. For completeness, the modifications 
required to handle a homogeneous problem and a brief outline of the method are 
given here. 

Referring to Fig. 1 a, it is natural to identify two distinct regions for the potential V, 

(i) a core region (c), 0 <r < rc, 
(2.2) 

(ii) a background region (b), r, < r < co. 

Accordingly, as indicated in Fig. lb, we choose to implement the GEM with two 
elements, these being the regions (b) and (c) in (2.2). Following [ll], we then recast 
Eq. (2.1) as the pair of equations 

xdr) = Ed), 0 <r < rc, 
(2.3a) 

sdr) = Ew,(r), rc br -G 03, 
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subject to the boundary conditions 

u,(r) - r, r -+ 0, 

#b(r) - 0, r--t 00, 

and the interface conditions, 

udr,-) = Ub(r,+), 

(2.3b) 

(2.3~) 
uXr,-) = uiXr,+), 

where 

Then, as shown in Appendix I, the functional 

E 
T c, 

(w wb) = .f? w,%‘w, dr + .fc w&%~ dr + (wow@,+, + (WA - w&~),=~~ 

J’l;o w,W, dr + J; wbwb dr 
(2.4) 

is stationary for arbitrary variations in the trial functions w, , wb about the true 
solutions of Eq. (2.3). Note that these trial functions do not exactly satisfy the boundary 
conditions at r = 0 (although they do satisfy these at r = co) or the interface conditions 
at r = rc . The variational method will then reproduce the conditions, at r = 0, 
rc and at the same time approximate the solution in the interior of regions (b) and (c). 

We introduce appropriate expansion sets in the two regions 

g-1 

Nb 
(2.5) 

Inserting these expansions into (2.4) and finding the stationary value of the functional 
leads to the symmetric matrix eigenvalue problem (ti is Hermitian). 

(2.6) 

Equation (2.6) is a (2 x 2) block-matrix eigenvalue problem and the definitions of 
the various matrix quanties &, , -cb , B etc. are given in Appendix I. As the notation 
implies, the matrix 3,, is the mat& of the operator ~9’ in region (c), while the matrix 
Beb is the matrix describing the interface term in functional (2.4). In Eq. (2.5) ZV, and 
Nb can take any suitable values, and thus the matrix BCb is not necessarily square. 
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It should also be noted that the trial functions h,,i and hb,{ need not have the same 
form-rather, they should be chosen to reflect the anticipated solution behavior 
in the appropriate region. 

Finally, as should be apparent from the functional (2.4) and Eq. (2.6), the GEM is 
very similar in concept to the conventional Rayleigh-Ritz approach-indeed this 
latter approach can be interpreted (if so desired) as a single element GEM (with no 
interface conditions). 

2.3. Results 

For a realistic nuclear discontinuous potential we have taken 

V(r) 
I 

= 670 x 1.4/41.5 r < rc, 
= -1.4 x 139.4 x O.OSZ(l + 8.72 + 10.6Z2)/41.5 r k rc, (2.7) 

rc = 0.688 fm Z = exp(y)/pr p = l/1.415, 

this being the IS, potential of Bressel, et al. [ 141, adjusted by a factor of 1.4 to produce 
a bound state. From previous work using this potential [12, 131, the value of the 
binding energy is 

E = -0.0377155 

and the exact value of the wavefunction discontinuity at the core du” is 

Au” = 36.3816, 

where 

When using global trial functions, it is desirable for stability reasons to use orthogonal 
polynomials (see Mikhlin [15]). Accordingly, in Eq. (2.5) 

h,.,(r) = Pi-,(2r/r, - 1) 

h&r) = L,-,(2&r - r,)) f++ 

i = l,..., NC, 

i = l,..., Nb , 
(2.9 

where in (2.9), Pi and Lt are, respectively, Legendre and Laguerre polynomials (see 
Abramowitz and Stegun [16]). With this choice of trial functions, the boundary 
condition at r = 0 is not satisfied exactly (but that at r + co is) and the normalization 
matrices I& and l&, in Eq. (2.6) are diagonal as desired. 

The required matrix elements in (2.6) were evaluated by numerical quadrature, a 
scaled Gauss-Legendre rule being used in [0, r,] and a scaled Gauss-Laguerre rule in 
[r. , co]. The results presented here used a 30-point rule in each region, it being found 
that stable results were produced for sufficiently high-order quadrature rules. The 
nonlinear parameter fl in Eq. (2.9) was set to 1.5 this being the value previously used 
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in [13]. Figure 2(a) shows the results (plotted on a logarithmic scale) obtained for 
J EN - E I where EN is the estimate of the binding energy for N = NC + Nb trial 
functions. Two distinct sets of results are shown for the choices 

(i) Nb = NC, A’ = 2N,, 

(ii) Nb = 2N, , N = 3N,. 
(2.10) 

I$- 

ll?- 

16 

l?- 

13 - 
. 

,ibi--” 
20 30 LO 

N 

FIG. 2. Results for the bound-state problem of Section 2, in which X indicates N* = N, and 
indicates Na = 2N, . The gradient of the straight line is indicated thus (G), where G is the asymptotic 

convergence rate of Section 2.3: (a) 1 EN - E / --results from Ref. [13]; and (b) 1 w&,-) - wa(r, + )I. 

As is clear from the graph, both sets of results converge as N increases. However it 
is also apparent that the results for choice (ii) in (2.10) are much better in the sense 
that for a total number of trial functions N, more accurate results are obtained. This 
is not surprising, since the form of the potential (2.7) would lead one to expect the 
true solution to have a more complicated form in region (b) than in region (c), and 
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hence require more trial functions to give a good description. Figure 2(a) also shows 
a straight line which is the best fit (by eye) to both sets of results. The gradient G of 
this line is a measure of the asymptotic convergence rate, i.e.. for large N. 

1 EN - E 1 = (constant) WC. 

As indicated on the graph, G N 12 confirming the hope mentioned in the introduc- 
tion of achieving high convergence rates in the GEM. For comparison, we have also 
included on Fig. 2(a) the results obtained in [13] from the conventional R-R approach 
(with continuous t.f.s.). Clearly there has been a significant improvement. It should 
also be noted that the GEM here has achieved a convergence rate better than that in 
[13] even with the inclusion of core terms. 

Fig. 2(b) shows the discontinuity in the solution across the interface at rc 

Lb = I We@,--) - birc+)l 
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FIG. 3. As Fig. 2: (a) 1 t~(O)j; (b) I w:(ro - ) - w&r, + )I; and (4 D (= S=tion 2.3). 
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for a total of N trial functions. Again it is apparent that as N increases, both sets of 
results are tending to zero, showing that the GEM is indeed reproducing the interface 
conditions (2.3~). The results for choice (i) in (2.10) display the “double convergence” 
effect very often seen in global varational methods, but those for (ii) appear to decrease 
smoothly. Also shown is the best fit line to the results, and from this we deduce an 
approximate convergence rate O(N-6, as might be expected from the result of Fig. 2a. 
Figure 2b only demonstrates that the discontinuity in the solution decreases as N 
increases-it should be emphasized that both w&,--) and w&,+) separately con- 
verge. 

Figure 3(a) shows the reproduction of the boundary condition at r = 0, i.e., 
1 w,(O)/. As N increases, this quantity is tending to decrease, the convergence rate 
being similar to that obtained for 4~. 

The discontinuity in the first derivative at r = r, , 

du’ = I WE@,-> - w;(r,+)l 

is shown in Fig. 3b. Comments similar to these for du apply in this case, with the 
exception that the convergence rate is now approximately O(N-4). 

The results obtained for du and du’ are not totally unexpected since the variational 
functional has been deliberately constructed in order to force these quantities to be 
continuous across the interface. However, there is no analogous term for the second 
derivative discontinuity. In order to represent this quantity, we must rely on obtaining 
a good numerical solution in both regions by systematic increase of the terms in the 
expansion sets. 

Figure 3c shows the quantity 

D = Idw" - du" I, 

where du” is given by (2.8) and dw” is the similar quantity constructed from the 
numerical solution, 

hv" = [(g-), + - (~),J/Kwc(G-) + w(~o+)Y4. 
c 0 

The sets of results in Fig. 3c display a different behavior, but after an erratic start, 
they tend to decrease for large N. For the results corresponding to choice (i) in (2. IO), a 
reasonable estimate of the convergence rate is O(N-3) as shown. However for the 
choice (ii) in (2.10) no sensible estimate can be obtained, but an O(N-3) rate is not 
totally incompatible with these results. 

In the results presented here we have chosen h,,i so that the boundary condition 
at r = 0 is not satisfied exactly. If hc,d is chosen to exactly satisfy this condition, 
results very similar to those presented here are obtained, the only difference being 
that they are slightly more accurate for small values of N (510). 
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3. THE GEM APPLIED TO A SCATTERING PROBLEM 

3.1. Problem 

The s-wave scattering of a two-body s-wave system is described by 

924(r) = 0, O<r<co, 

where 

A? = - -$ + V(r) - k2 

and k2 is the energy. As in Section 2, V is a (discontinuous) potential. 
Asymptotically (r -+ oo), 

u-+f’+qG 

where 

F = sin(kr)/k, G = cos(kr), q = tan 6/k, 

(3.la) 

(3.1 b) 

(3.lc) 

and 6 is the scattering phase shift. The boundary condition at r = 0 is 

u(r) - r. (3.ld) 

3.2. Global Elements 

In this section, we indicate the application of the GEM to a scattering problem. 
Two elements could be used, but since in the scattering problem it is possible to 
identify (and to handle simply) a third region, we use three elements by introducing a 
break point rb (see Fig. lc) chosen so that for r > rb the potential V is essentially zero. 

Thus there are now three regions, 

(i) a core region (c), 0 < r < rC ; 

(ii) a middle region (m), ro < r < rb ; 

(iii) a background region (b), rb < r < co. 
(3.2) 

Following Section 2.2, we introduce the problems 

L?u~=o 1 = c, m, b, 

subject to the conditions 

(3.3a) 

u, - r, r + 0, 

Ub -+ F f qG, r--t co, 
(3.3b) 
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and the interface conditions at r, and rb , 

k(rc-) = k&c+>, 4&b-) = ub(rb+), 
(3.3c) 

4(r,-) = 4&,+), 4&b-) = 4(rb+). 

Then, as is shown in Appendix II, the functional 

is stationary for arbitrary variations in the trial functions about the true solutions of 
Eq. (3.3) provided that (as in the conventional Kohn Variational Principle, see [17]) 

wb=F+q,G+w 

and w + 0 as r -+ co. Note also that the trial functions neither satisfy the boundary 
condition at r = 0, nor the interface conditions at rc , rb . As the notation implies, the 
functional gives a second-order estimate of the quantity q. 

Introducing appropriate expansion sets in the three regions 

Nl 
wz = c ~Z.ihZ,i > I = c, m, 

i=l 

Nb 
wb = F + ‘l& + c ab,&b,i 

i-l 

(3.4) 

and finding the stationary value of the functional leads to the equations for the 
variational parameters aI (1 = c, m, b) and qT , 

The definitions of the various quantities in this (4 x 4) block matrix equation are 
given in Appendix II. 

The variational parameters are found by solving the matrix equation (3.5) as 
indicated in Appendix II. From these values, the second order estimate qi2’ is found 
by substitution into the functional. 
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We again consider the potential of Eq. (2.7). From the detailed form of the potential, 
it is possible (within a constant) to write down the exact solution in region (c). 
Accordingly the trial functions were chosen as 

h c = sinw P I r>, P2 2 0 p2 = 
sin(l p I r), p2 < 0 i 

qr ,2) _ p 
c i 

hm,i = Pi-l(C2r - rh - rcY(rh - rc)), i = l,..., AC, , 

hb,i = &-,(2&r - rb)) ecBr i = l,..., A$ , 1: 
X 

%I3 

al 

lO”- 
x 

ItI5 - 

I I I 1 I’ 1 
i a 12 16 20 24 2f 

N 

FIG. 4. Results for the scattering problem of Section 3. The gradient of the straight line is in- 
dicated (y), where y is the (exponential) convergence rate of Section 3.3: in (a) X indicates I q$’ -q 1; 
and in (b) X indicates I w,(r, -) - wm(ra +)I and . indicates 1 wm(ro -) - wb(rb +)i. 
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where Li , Pi are as in Section 2.3. Note that there is only one trial function in region 
(c) and that h, explicitly satisfies the boundary condition at r = 0. The results presented 
below correspond to using the same type of integration rules as in Section 2.2, the 
parameter /3 being fixed at the same value as was previously used. The value of k was 
chosen to be 0.7 (corresponding to an energy of about 20 MeV) and for this value the 
exact value of the scattering quantity q was taken to be (to eight significant figures) 

4 = 2.9833377. 

(This value of 4 was obtained from a previous spline calculation based on the tech- 

bl 

X 

. 
. 

x 

X 

FIG. 5. As for Fig. 4: in (a) X indicates I wi(rC -) - wA(rC +)I and . indicate8 I wk(r, -) - 
w&, +)I ; and in (b) X indicates D and * indicates / wk(rb -) - wi(rb +)I. 
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niques used in [I23 and confirmed by the results obtained here.) It was also found 
“best” in practice to set N, = 2N, and thus the total number of trial functions is 
N = 3N,, + 1. A suitable value of rb was taken to be rb = 4r, 

The results obtained are shown in Fig. 4 and 5. It should be noted that these results 
have been plotted on a log-linear scale. If the results presented in this section are 
plotted on a log-log plot (as in Section 2), then the trend of the results has a distinct 
downward curvature for large N (much more pronounced than in Section 2), indicating 
the possibility of exponential convergence. 

Figure 4a shows the results for 

I 4:’ - 4 I 

against N, where qjf) is the second-order estimate of q produced by the GEM using 
a total of N trial functions. Clearly satisfactory convergence is obtained. Also shown is 
the best fit (by eye) line to these results, the gradient y of this line being indicated on 
the graph. Note that y is a measure of the asymptotic convergence rate, 

I qjy2) - q I = (Const) exp(--yN) 

Figure 4b shows the corresponding results for the discontinuities in the solution 
across the two interfaces at rc and rb . As N increases, both sets of results are tending 
to zero, at approximately the same rate (as indicated by the straight line). 

Similar remarks apply for the derivative discontinuities shown in Fig. 5a. 
Finally Fig. 5b shows the results for the known second derivative discontinuity at 

r. (the quantity D defined in Section 2.3 with wb replaced by wm) and the discontinuity 
at rb 

After an erratic start (N 5 12), both of these sets of results settle down and converge 
smoothly at a rate as indicated on the graph. 

Results, not presented here, for the scattering problem using two elements as in 
Section 2 were found to have a behavior similar to those obtained earlier in Section 2. 
There has been a significant improvement, both in the asymptotic convergence rate 
and in the attained accuracy by the introduction of a third region. This improvement 
is not due to using the exact solution in 0 6 r < rc , since the results using Legendre 
polynomials as the expansion set in this region show a behavior very similar to those 
described in this section (differing only in the number of trial functions being 4Nb). 
Hence the improvement must be a reflection of breaking the region into suitable 
subregions and using appropriate expansion sets within each subregion, in particular, 
the sinusoidal terms now only contribute in the asymptotic region (r > rb) where 
the potential V is essentially zero. 
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4. CONCLUSIONS 

In this paper, a recently proposed global variational method has been considered. 
The results, for the example used, indicate that the method has been successful in 
achieving, as hoped, a high convergence rate and at the same time reproducing the 
nonsmooth behavior in the solution. Moreover, the GEM used here has attained a 
convergence rate significantly higher than previous attempts [12, 131 using a conven- 
tional variational method with the inclusion of specially constructed core terms. The 
results also indicate that by choosing the elements of the GEM to reflect the physics of 
the problem, an exponential convergence rate can be achieved. 

The method is very similar to the conventional GVM in overall concept, and existing 
computer programs require little adaptation to handle the GEM. 

In this paper, we have not been primarily concerned with the efficiency of the GEM 
from the point of view of the operational cost (i.e., the numerical quadrature required 
to set up the matrices and the resulting linear equation solution). Rather by considering 
a one-dimensional problem, for which this cost is not very large, we have concentrated 
on the convergence rate and the reproduction of the second derivative discontinuity. 
For a two-dimensional problem, however, a naive implementation of the GEM 
could lead to a prohibitively large operational count, but recent theoretical develop- 
ments [18] have indicated how these may be significantly reduced by careful choices of 
trial functions, elements, quadrature technique, and linear equation solution technique. 

APPENDIX I 

Consider the functional 

where 

N(w, , w,J = 1’” w,Xw, dr + 11 wbXwb dr + (w,wE),.=,, + (wbwE - w~w,),=,~ 
0 

and 

D(wc , wb) = 
s 

” w,w, dr + lrn wbwb dr. 
0 75 

We expand the trial functions w, , wb about the true solutions of Eq. (2.3) 

w, = 24, + EV, Wb = Ub + EVI, 

where E is a scalar and v, , vb are arbitrary variations in the appropriate quantity. 
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Then 

Using relations (2.3a) and (2.3b) and inverting the order of integration in the l term 
lead to 

N(Wc 3 Wd = E ]j’” U& dr f jc ubub dr/ -b- 2cE 11” u,v, dr + j: ubvb dr 
0 0 

+ (@; - u;h + vb) - h, - ub)(& + v%=~,l + E2N(Vc , vb) 

= ED@, , ub) + 243 1 j” WC dr + jr; u&, dr 1 + l “N(Vo , Ub) 0 

= ED(w, , wb) + l 2 f lo” V,(* - E) V, dr + j= t+,(ti - E) Z),, dr 
70 

Hence 

+ h&O + (vbd - u;v&, . I 

‘%(“‘, , wb) = E + O(E’). 

Thus the functional ET(wC , wb) is stationary about the true solution of Eq. (2.3) 
without requiring that the trial functions w, , wb should satisfy the boundary condition 
at r = 0 nor the interface conditions at r = rc . 

Introducing suitable expansion sets /z,,~ and hb,( (see Eq. (2.5)) and finding the 
resultant stationary value of the functional lead to the block matrix equations. 

where the matrices are given by 

581/28/3-7 
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I m 
;bb = - - u 2 (hb,izhb,j + hb,j*hb,i) dr 1 

70 t 

gcb z ‘2 {K.hb.j - hc,&.~)r-r, 9 

vbb = 
s 

m hb.A.j dr, 

ac = ac,i , i = l,..., N,, 

=b = ab.i , i = I,..., Nb , 

9 = zero matrix of appropriate size. 

i,j= 1 ,-*., Nb, 

j=l Nb, ,..', 

i,j = I,..., NC, 

i,j= 1 ,..'> Nb, 

APPENDIX II 

Consider the functional 

- (w,wl?),-,, - (%w: - %d,)r-r, - (wbw:, - W,&),=,, 

As in Appendix I, we introduce 

wz = us f EVZ 1 = c, m, b, 

where uz is the solution of Eq. (3.3). 
Using the ideas of the rapid derivation of the Kohn Variational Principle given in 

Delves and the result 

wb - =b = l b - kT - dG r+ 00, 

together with the manipulations given in Appendix I, leads to the functional [qp’] 
being stationary about the true solution of Eq. (3.2) without requiring the trial 
functions wr to satisfy the interface conditions. Moreover, [qk”] gives a second order 
estimate of q, 

[#‘I = 4 + we 

Introducing the expansions for wz given in Eq. (3.4) and finding the stationary value 
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of the functional leads to the (4 x 4) block matrix equation (3.5) for the variational 
parameters. 

The definition of the various quantities in Eq. (3.5) are 

i = l,..., ND , j = l,..., Ng , 
pq = cm, mb, 

i = I,..., Nb , A = F, G, 
. 

&A z k l(A4n.i - A’hm,LJ~ i = 1 ,**-, N,, A = F,G, 

L”B E ; 
15 

m (A9B + BZA) dr , 
7) I AB = FF, GG, GF, 

at = 01l.i , I = c,m,b, i = I,..., N,, 

0 = zero matrix or vector of appropriate size. 
To solve Eq. (3.5), we introduce the quantities PI, yz , such that 

a2 = -0% + qTyyl) 

and solve the pair of equations 

I = c, m, b 

from which 

4r = idI - ~LGF+ ~B:G' Pm + 2Lk* ~%)/(LGG - %G’Y, - GG*Y~J. 

Substitution of qT and a1 , I = c, m, b, into the functional then leads to the second- 
order estimate [qi2’]. 
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